CSE 451: Operating Systems
Winter 2026

Module 13

Page Table Management, TLBs,
and Other Pragmatics

Gary Kimura

Address translation and page faults

(refresher!)
virtual address
virtual page # | offset
physical memory

page
page table frame O

page
physical address frg;ngee1
> | page frame # |—— | page frame # | offset ——>|

page
Recall how address frame 3

translation works

What mechanism page

causes a page fault frame Y
to occur?

How does OS handle a page fault?

Page Fault (an exception) causes system to be entered

System saves state of running process, then vectors to
page fault handler routine
— find or create (through eviction) a page frame into which to load
the needed page (1)
« if /O is required, run some other process while it's going on
— find the needed page on disk and bring it into the page frame (2)
* run some other process while the I/O is going on
— fix up the page table entry

* mark it as “valid,” set “referenced” and “modified” bits to false, set
protection bits appropriately, point to correct page frame

— put the process on the ready queue

* (2) Find the needed page on disk and bring it into the
page frame

processor makes process ID and faulting virtual address
available to page fault handler

process ID gets you to the base of the page table
VPN portion of VA gets you to the PTE

data structure analogous to page table (an array with an
entry for each page in the address space) contains disk
address of page

at this point, it's just a simple matter of I/O

» must be positive that the target page frame remains available!
— or what?

* (1) Find or create (through eviction) a page frame into
which to load the needed page

— run page replacement algorithm
» free page frame
 assigned but unmodified (“clean”) page frame
 assigned and modified (“dirty”) page frame
— assigned but “clean”
» find PTE (may be a different process!)

« mark as invalid (disk address must be available for subsequent
reload)

— assigned and “dirty”
» find PTE (may be a different process!)
* mark as invalid
 write it out

— OS may speculatively maintain lists of clean and dirty frames
selected for replacement

« May also speculatively clean the dirty pages (by writing them to
disk)

“Issues”

Memory reference overhead of address translation
— 2 references per address lookup (page table, then memory)

— solution: use a hardware cache to absorb page table lookups
« translation lookaside buffer (TLB)

Memory required to hold page tables can be huge
— need one PTE per page in the virtual address space
— 32 bit AS with 4KB pages = 220 PTEs = 1,048,576 PTEs

— 4 bytes/PTE = 4MB per page table
« OS’s typically have separate page tables per process
» 25 processes = 100MB of page tables

— 48 bit AS, same assumptions, 64GB per page table!

Solution 1 to (2): Page the page tables

Simplest notion:
— Put user page tables in a pageable segment of the system’s
address space
« The OS page table maps the portion of the VAS in which the user
process page tables live

— Pin the system’s page table(s) in physical memory
« So you can never fault trying to access them

— When you need a user page table entry

« It's in the OS virtual address space, so need the OS page table to
translate to a physical address
* You cannot fault on accessing the OS page table (because it’s pinned)

« The OS page table might indicate that the user page table isn’t in
physical memory
— That’s just a regular page fault

This isn’t exactly what's done any longer

— Although it is exactly what VAX/VMS did!
— And it's a useful model, and a component, for what’s actually done

Solution 2 to (2): Multi-level page tables

How can we reduce the physical memory
requirements of page tables?

— observation: only need to map the portion of the address
space that is actually being used (often a tiny fraction of the
total address space)

« a process may not use its full 32/48/64-bit address space
« a process may have unused “holes” in its address space

» a process may not reference some parts of its address space
for extended periods

— all problems in CS can be solved with a level of indirection!
 two-level (three-level, four-level) page tables

Two-level page tables

« With two-level PT's, virtual addresses have 3 parts:

master page number, secondary page number, offset
master PT maps master PN to secondary PT

secondary PT maps secondary PN to page frame number
offset and PFN yield physical address

10

virtual address

Two level page tables
A generic idealized picture

master page #

secondary page# offset

offset

physical memory

page
frame O

> page

amzstt:t:m physical address
Pag page frame #
secondary
R zzt;:rlzzz — | page table
»| page frame
number

frame 1

page
frame 2

page
frame 3

page
frameY

11

Here is an actual PDE/PTE

Page-Directory Entry (4-KByte Page Table)

31 12 11 9876543210
_ PlP|U|R

Page-Table Base Address Avail |G|P|o|alclw|/|/]|P
D|IT|S|W

Global page (lgnored)
Page size (0 indicates 4 KBytes)
Reserved (set to 0)
Accessed
Cache disabled
Write-through
User/Supervisor
Read/\Write
Present

S
Available for sysiem programmer'’s useJ ‘

Page-Table Entry (4-KByte Page)
31 121 9876543210

) P PlP|UIR
Page Base Address Avail |G|A[D|A|C|W[/]|/]|P

T D|T|s|wW
Available for system programmer’s use J ‘

Global Page
Page Table Attribute Index
Dirty
Accessed
Cache Disabled
Write-Through
User/Supervisor
Read/\Write
Present

2/8/2026

Another view of the 2-level page table

Lo Address

a 22 21 12 11 0
Directory Tabile Offset |
A2 4-KByle Pags
410 __,."'"ll:l Page Table -p-. Prrysical Addrass
Page Direclary

| R
—»| PDE with P5=0 —=-

o 20
yaz
| CR3

2/8/2026 13

Example:

— 32-bit address space, 4KB pages, 4 bytes/PTE

* how many bits in offset?
— need 12 bits for 4KB (2'2=4K), so offset is 12 bits
« want master PT to fit in one page
— 4KB/4 bytes = 1024 PTEs
— thus master page # is 10 bits (219=1K)
— and there are 1024 secondary page tables
« and 10 bits are left (32-12-10) for indexing each secondary
page table

— hence, each secondary page table has 1024 PTEs and fits in one
page

14

Generalizing

Early architectures used 1-level page tables
VAX, P-ll used 2-level page tables

SPARC used 3-level page tables

68030 used 4-level page tables

Key thing is that the outer level must be wired down
(pinned in physical memory) in order to break the
recursion — no smoke and mirrors

15

Intel’'s 5 level paging

5 level paging overview

it -] 48 47 g IE o IS X1 X 17 11 [n]
[AL [AL & | mrectory pir [Er— Tob ks e

4-Eve Page
L1s Phoysi el Ackr

9 3

3
| e l— PICwth P 0 ——A0— - ick

| g - Page Tablke

\ Page: =« Dreoony
= FRiL & — 340 | illll;il III|||||'|..I.'

; Translation Using 5-Level Paging

« CRALE1:12] contains physical address ' FMLES table
. near adress bits 56: 48 splect an PMLEL
- Tl SE E—]

« page walk | WE USINE near address hits 47 -0

inel® Open Source Technaology Center 9

2/8/2026 16

Alternatives

 Hashed page table (great for sparse address spaces)
— VPN is used as a hash
— collisions are resolved because the elements in the linked
list at the hash index include the VPN as well as the PFN
* Inverted page table (really reduces space!)
— one entry per page frame
— includes process id, VPN
— hard to search! (but IBM PC/RT actually did this!)

17

Making it all efficient

Original page table scheme doubled the cost of
memory lookups

— one lookup into page table, a second to fetch the data

Two-level page tables triple the cost!!
— two lookups into page table, a third to fetch the data

How can we make this more efficient?

— goal: make fetching from a virtual address about as efficient
as fetching from a physical address

— solution: use a hardware cache inside the CPU
» cache the virtual-to-physical translations in the hardware
« called a translation lookaside buffer (TLB)
« TLB is managed by the memory management unit (MMU)

18

TLBs

« Translation lookaside buffer
— translates virtual page #s into PTEs (not physical address)

« TLB is implemented in hardware

is a fully associative cache (all entries searched in parallel)
cache tags are virtual page numbers
cache values are PTEs (including protection, valid bit!)

with PFN(from PTE) + offset, MMU can directly calculate the
physical address

 TLBs exploit locality
— processes only use a handful of pages at a time

« can hold the “hot set” or “working set” of a process

— hit rates in the TLB are therefore really important for performance

19

Associative and Direct mapping

A side note about caches.

 Fully, N-way, and Direct — where to lookup entries in
the cache.

» Cost difference of implementing a fully versus direct

mapped cache.

abc

def

ghi

?
vz e

par

stu

VyX
20

Intel i7 Skylake TLB

« TLB has cached levels, too

¢ Sizes
— L1:
« 32Kb for each I/D cache, 4/5 clocks to access
« 128/64 1/D TLB entries, one clock to access, 9 clocks penalty

— L2:

« 256Kb, 12 clocks to access

« 1536 TLB entries, 14 clocks to access, 17 clocks penalty
— L3:

« 8Mb, 42 clocks to access

21

Managing TLBs

Address translations are mostly handled by the TLB
— >99% of translations, but there are TLB misses occasionally

— in case of a miss, translation is placed into the TLB, values are
evicted. Selection algorithm is proprietary

Hardware (memory management unit (MMU))
— knows where page tables are in memory
« OS maintains them, HW access them directly
— tables have to be in HW-defined format

— this is how x86 works
« And that was part of the difficulty in virtualizing the x86 ...

Software loaded TLB (OS)
— TLB miss faults to OS, OS finds right PTE and loads TLB

— must be fast (but, 20-1000 cycles typically)
« CPU ISA has instructions for TLB manipulation
« OS gets to pick the page table format

22

Managing TLBs (2)

 OS must ensure TLB and page tables are consistent

— when OS changes protection bits in a PTE, it needs to
invalidate the PTE if it is in the TLB

 What happens on a process context switch?
— remember, each process typically has its own page tables

— need to invalidate all the entries in TLB! (flush TLB)
* this is a big part of why process context switches are costly

— can you think of a hardware fix to this?

« When the TLB misses, and a new PTE is loaded, a
cached PTE must be evicted
— choosing a victim PTE is called the “TLB replacement policy”

23

Functionality enhanced by page tables

Code (instructions) is read-only
— A bad pointer can’t change the program code

Dereferencing a null pointer is an error caught by
hardware

— Don't use the first page of the virtual address space — mark it
as invalid — so references to address 0 cause an interrupt

Inter-process memory protection

— My address XYZ is different than your address XYZ

Shared libraries
— All running C programs use libc

— Have only one (partial) copy in physical memory, not one per
process

— All page table entries mapping libc point to the same set of
physical frames

* DLL’s in Windows
24

Loading Shared Libraries

libC appears in both virtual address spaces
It doesn’t have to be in the same virtual address location, but
we (the OS) try to make this happen

As a rule of thumb each library has a preferred virtual address
location (makes loading the library a whole lot easier

25

Shared Libraries

« But after a while we might run out of address space to share all the
libraries. Therefore we need to be able to dynamically relocate them

libWW

Process 3

libZ

« What happens if we need to load another library called libWW, whose

preferred address collides with libW? Oh, the trouble we cause
26

More functionality

* Generalizing the use of “shared memory”

— Regions of two separate processes’s address spaces map to
the same physical frames

— Why? Faster inter-process communication
 Just read/write from/to shared memory
« Don’t have to make a syscall

— Will have separate PTE's per process, so can give different
processes different access rights

- E.g., one reader, one writer
« Copy-on-write (CoW), e.g., on fork()

— Instead of copying all pages, create shared mappings of
parent pages in child address space
« Make shared mappings read-only for both processes
« When either process writes, fault occurs, OS “splits” the page

27

A bizarre shared memory case

Can double, triple, quadruple,... map the same
physical address multiple times within the same
process.

All at different virtual address locations.
Why do this? | don’t know.
But possible to do. Yes.

28

| ess familiar uses

« Memory-mapped files

— instead of using open, read, write, close
* “map” afile into a region of the virtual address space
— e.g., into region with base ‘X’
» accessing virtual address ‘X+N'’ refers to offset ‘N’ in file
« initially, all pages in mapped region marked as invalid
— Using a “table that looks like a page table”...
« OS reads a page from file whenever invalid page accessed

« OS writes a page to file when evicted from physical memory
— only necessary if page is dirty

29

Memory Mapped Files

Process VAS /\

File on disk

=) D

N~ —

« Forget about doing reads and writes, just touch the
memory and the result is propagated back to the file

« Can move the mapping to anywhere in the file

30

Memory mapped files

Imagine you have a pointer-based, in-memory data
structure, like a tree

You want to preserve it across runs

Usual approach:

— Serialize on way from memory to a disk file, deserialize on
way from file back to memory

« E.g., to serialize, perform a depth-first traversal, writing each
node to disk as you go; to deserialize, do the opposite

Potentially easier
— Allocate tree nodes in a “region”

— Treat the memory region as a file, using the memory-
mapped file facility

— Normal paging causes changes to be pushed to disk; the file

s still there next time you run
— What happens if you crash? Uh oh...

31

More unusual uses

Soft faults: faults on pages that are actually in
memory, but whose PTE entries have artificially been
marked as invalid. Resolving such a soft fault is
relatively cheap compared to reading in the page
from backend storage.

That idea can be used whenever it would be useful to
trap on a reference to some data item

Example: debugger watchpoints
— How?

Windows as we will see also uses soft faults in its
page replacement strategy.

32

Summary

We know how address translation works in the
“vanilla® case (single-level page table, no fault, no
TLB)

— hardware splits the virtual address into the virtual page
number and the offset; uses the VPN to index the page
table; concatenates the offset to the page frame number
(which is in the PTE) to obtain the physical address

We know how the OS handles a page fault

— find or create (through eviction) a page frame into which to
load the needed page

— find the needed page on disk and bring it into the page frame
— fix up the page table entry
— put the process on the ready queue

33

We're aware of two “gotchas” that complicate
things in practice
— the memory reference overhead of address translation

 the need to reference the page table doubles the memory traffic

 solution: use a hardware cache (TLB = translation lookaside
buffer) to absorb page table lookups

— the memory required to hold page tables can be huge
 solution: use multi-level page tables; can page the lower levels,
or at least omit them if the address space is sparse

— this makes the TLB even more important, because without it, a
single user-level memory reference can cause two or three or four
page table memory references ... and we can’t even afford one!

34

« TLB details

— Implemented in hardware
- fully associative cache (all entries searched in parallel)
« cache tags are virtual page numbers
» cache values are page table entries (page frame numbers)

« with PTE + offset, MMU can directly calculate the physical
address

— Can be small because of locality
* 16-48 entries can yield a 99% hit ratio
— Searched before the hw or OS walks the page table(s)

 hit: address translation does not require an extra memory
reference (or two or three or four) — “free”

* miss: walk the page table(s) to translate the address; this
translation is put into the TLB, evicting some other translation;
typically managed LRU

35

— On context switch

« TLB must be purged/flushed (using a special hardware
instruction) unless entries are tagged with a process ID

— otherwise, the new process will use the old process’s TLB entries

and reference its page frames!

Cool tricks

Read-only code

Dereferencing a null pointer is an error
Inter-process memory protection
Shared libraries

Inter-process communication

Shared memory

Copy-on-write

Memory-mapped files

Soft faults (e.g., debugger watchpoints)

36

