
CSE 451: Operating Systems

Winter 2026

Module 13

Page Table Management, TLBs,

and Other Pragmatics

Gary Kimura

1

2

Address translation and page faults
(refresher!)

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset

physical address

page frame #page frame #

page table

offset

virtual address

virtual page #

What mechanism
causes a page fault

to occur?

Recall how address
translation works

3

How does OS handle a page fault?

• Page Fault (an exception) causes system to be entered

• System saves state of running process, then vectors to
page fault handler routine
– find or create (through eviction) a page frame into which to load

the needed page (1)
• if I/O is required, run some other process while it’s going on

– find the needed page on disk and bring it into the page frame (2)
• run some other process while the I/O is going on

– fix up the page table entry
• mark it as “valid,” set “referenced” and “modified” bits to false, set

protection bits appropriately, point to correct page frame

– put the process on the ready queue

4

• (2) Find the needed page on disk and bring it into the
page frame
– processor makes process ID and faulting virtual address

available to page fault handler

– process ID gets you to the base of the page table

– VPN portion of VA gets you to the PTE

– data structure analogous to page table (an array with an
entry for each page in the address space) contains disk
address of page

– at this point, it’s just a simple matter of I/O
• must be positive that the target page frame remains available!

– or what?

5

• (1) Find or create (through eviction) a page frame into
which to load the needed page
– run page replacement algorithm

• free page frame

• assigned but unmodified (“clean”) page frame

• assigned and modified (“dirty”) page frame

– assigned but “clean”
• find PTE (may be a different process!)

• mark as invalid (disk address must be available for subsequent
reload)

– assigned and “dirty”
• find PTE (may be a different process!)

• mark as invalid

• write it out

6

– OS may speculatively maintain lists of clean and dirty frames
selected for replacement

• May also speculatively clean the dirty pages (by writing them to
disk)

7

“Issues”

• Memory reference overhead of address translation
– 2 references per address lookup (page table, then memory)

– solution: use a hardware cache to absorb page table lookups
• translation lookaside buffer (TLB)

• Memory required to hold page tables can be huge
– need one PTE per page in the virtual address space

– 32 bit AS with 4KB pages = 220 PTEs = 1,048,576 PTEs

– 4 bytes/PTE = 4MB per page table
• OS’s typically have separate page tables per process

• 25 processes = 100MB of page tables

– 48 bit AS, same assumptions, 64GB per page table!

8

Solution 1 to (2): Page the page tables

• Simplest notion:
– Put user page tables in a pageable segment of the system’s

address space
• The OS page table maps the portion of the VAS in which the user

process page tables live

– Pin the system’s page table(s) in physical memory
• So you can never fault trying to access them

– When you need a user page table entry
• It’s in the OS virtual address space, so need the OS page table to

translate to a physical address

• You cannot fault on accessing the OS page table (because it’s pinned)

• The OS page table might indicate that the user page table isn’t in
physical memory

– That’s just a regular page fault

• This isn’t exactly what’s done any longer
– Although it is exactly what VAX/VMS did!

– And it’s a useful model, and a component, for what’s actually done

9

Solution 2 to (2): Multi-level page tables

• How can we reduce the physical memory
requirements of page tables?
– observation: only need to map the portion of the address

space that is actually being used (often a tiny fraction of the
total address space)

• a process may not use its full 32/48/64-bit address space

• a process may have unused “holes” in its address space

• a process may not reference some parts of its address space
for extended periods

– all problems in CS can be solved with a level of indirection!
• two-level (three-level, four-level) page tables

10

Two-level page tables

• With two-level PT’s, virtual addresses have 3 parts:
– master page number, secondary page number, offset

– master PT maps master PN to secondary PT

– secondary PT maps secondary PN to page frame number

– offset and PFN yield physical address

11

Two level page tables
A generic idealized picture

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset

physical address

page frame #

master
page table

secondary page#

virtual address

master page # offset

secondary
page tablesecondary

page table

page frame
number

Here is an actual PDE/PTE

2/8/2026 12

Another view of the 2-level page table

2/8/2026 13

14

• Example:
– 32-bit address space, 4KB pages, 4 bytes/PTE

• how many bits in offset?
– need 12 bits for 4KB (212=4K), so offset is 12 bits

• want master PT to fit in one page
– 4KB/4 bytes = 1024 PTEs

– thus master page # is 10 bits (210=1K)

– and there are 1024 secondary page tables

• and 10 bits are left (32-12-10) for indexing each secondary
page table

– hence, each secondary page table has 1024 PTEs and fits in one
page

15

Generalizing

• Early architectures used 1-level page tables

• VAX, P-II used 2-level page tables

• SPARC used 3-level page tables

• 68030 used 4-level page tables

• Key thing is that the outer level must be wired down
(pinned in physical memory) in order to break the
recursion – no smoke and mirrors

Intel’s 5 level paging

2/8/2026 16

17

Alternatives

• Hashed page table (great for sparse address spaces)
– VPN is used as a hash

– collisions are resolved because the elements in the linked
list at the hash index include the VPN as well as the PFN

• Inverted page table (really reduces space!)
– one entry per page frame

– includes process id, VPN

– hard to search! (but IBM PC/RT actually did this!)

18

Making it all efficient

• Original page table scheme doubled the cost of
memory lookups
– one lookup into page table, a second to fetch the data

• Two-level page tables triple the cost!!
– two lookups into page table, a third to fetch the data

• How can we make this more efficient?
– goal: make fetching from a virtual address about as efficient

as fetching from a physical address

– solution: use a hardware cache inside the CPU
• cache the virtual-to-physical translations in the hardware

• called a translation lookaside buffer (TLB)

• TLB is managed by the memory management unit (MMU)

19

TLBs

• Translation lookaside buffer
– translates virtual page #s into PTEs (not physical address)

• TLB is implemented in hardware
– is a fully associative cache (all entries searched in parallel)
– cache tags are virtual page numbers
– cache values are PTEs (including protection, valid bit!)
– with PFN(from PTE) + offset, MMU can directly calculate the

physical address

• TLBs exploit locality
– processes only use a handful of pages at a time

• can hold the “hot set” or “working set” of a process

– hit rates in the TLB are therefore really important for performance

Associative and Direct mapping

• A side note about caches.

• Fully, N-way, and Direct – where to lookup entries in
the cache.

• Cost difference of implementing a fully versus direct
mapped cache.

20

Page# PTE

abc

def

ghi

jkl

mno

pqr

stu

vyx

Page#

xyz
?

21

Intel i7 Skylake TLB

• TLB has cached levels, too
• Sizes

– L1:
• 32Kb for each I/D cache, 4/5 clocks to access
• 128/64 I/D TLB entries, one clock to access, 9 clocks penalty

– L2:
• 256Kb, 12 clocks to access
• 1536 TLB entries, 14 clocks to access, 17 clocks penalty

– L3:
• 8Mb, 42 clocks to access

22

Managing TLBs

• Address translations are mostly handled by the TLB
– >99% of translations, but there are TLB misses occasionally
– in case of a miss, translation is placed into the TLB, values are

evicted. Selection algorithm is proprietary

• Hardware (memory management unit (MMU))
– knows where page tables are in memory

• OS maintains them, HW access them directly

– tables have to be in HW-defined format
– this is how x86 works

• And that was part of the difficulty in virtualizing the x86 …

• Software loaded TLB (OS)
– TLB miss faults to OS, OS finds right PTE and loads TLB
– must be fast (but, 20-1000 cycles typically)

• CPU ISA has instructions for TLB manipulation
• OS gets to pick the page table format

23

Managing TLBs (2)

• OS must ensure TLB and page tables are consistent
– when OS changes protection bits in a PTE, it needs to

invalidate the PTE if it is in the TLB

• What happens on a process context switch?
– remember, each process typically has its own page tables

– need to invalidate all the entries in TLB! (flush TLB)
• this is a big part of why process context switches are costly

– can you think of a hardware fix to this?

• When the TLB misses, and a new PTE is loaded, a
cached PTE must be evicted
– choosing a victim PTE is called the “TLB replacement policy”

24

Functionality enhanced by page tables

• Code (instructions) is read-only
– A bad pointer can’t change the program code

• Dereferencing a null pointer is an error caught by
hardware
– Don’t use the first page of the virtual address space – mark it

as invalid – so references to address 0 cause an interrupt

• Inter-process memory protection
– My address XYZ is different than your address XYZ

• Shared libraries
– All running C programs use libc
– Have only one (partial) copy in physical memory, not one per

process
– All page table entries mapping libc point to the same set of

physical frames
• DLL’s in Windows

Loading Shared Libraries

• libC appears in both virtual address spaces

• It doesn’t have to be in the same virtual address location, but
we (the OS) try to make this happen

• As a rule of thumb each library has a preferred virtual address
location (makes loading the library a whole lot easier

25

Process 1 Process 2

libC

Shared Libraries
• But after a while we might run out of address space to share all the

libraries. Therefore we need to be able to dynamically relocate them

• What happens if we need to load another library called libWW, whose
preferred address collides with libW? Oh, the trouble we cause

26

Process 1 Process 2
libC

Process 3

libX
libW libY

libZ

libWW

27

More functionality

• Generalizing the use of “shared memory”
– Regions of two separate processes’s address spaces map to

the same physical frames

– Why? Faster inter-process communication
• Just read/write from/to shared memory

• Don’t have to make a syscall

– Will have separate PTE’s per process, so can give different
processes different access rights

• E.g., one reader, one writer

• Copy-on-write (CoW), e.g., on fork()
– Instead of copying all pages, create shared mappings of

parent pages in child address space
• Make shared mappings read-only for both processes

• When either process writes, fault occurs, OS “splits” the page

A bizarre shared memory case

• Can double, triple, quadruple,… map the same
physical address multiple times within the same
process.

• All at different virtual address locations.

• Why do this? I don’t know.

• But possible to do. Yes.

28

29

Less familiar uses

• Memory-mapped files
– instead of using open, read, write, close

• “map” a file into a region of the virtual address space
– e.g., into region with base ‘X’

• accessing virtual address ‘X+N’ refers to offset ‘N’ in file

• initially, all pages in mapped region marked as invalid

– Using a “table that looks like a page table”…
• OS reads a page from file whenever invalid page accessed

• OS writes a page to file when evicted from physical memory
– only necessary if page is dirty

Memory Mapped Files

• Forget about doing reads and writes, just touch the
memory and the result is propagated back to the file

• Can move the mapping to anywhere in the file

30

PTE
etc.

Process VAS

File on disk

31

• Imagine you have a pointer-based, in-memory data
structure, like a tree

• You want to preserve it across runs
• Usual approach:

– Serialize on way from memory to a disk file, deserialize on
way from file back to memory

• E.g., to serialize, perform a depth-first traversal, writing each
node to disk as you go; to deserialize, do the opposite

• Potentially easier
– Allocate tree nodes in a “region”
– Treat the memory region as a file, using the memory-

mapped file facility
– Normal paging causes changes to be pushed to disk; the file

is still there next time you run
– What happens if you crash? Uh oh…

Memory mapped files

32

More unusual uses

• Soft faults: faults on pages that are actually in
memory, but whose PTE entries have artificially been
marked as invalid. Resolving such a soft fault is
relatively cheap compared to reading in the page
from backend storage.

• That idea can be used whenever it would be useful to
trap on a reference to some data item

• Example: debugger watchpoints
– How?

• Windows as we will see also uses soft faults in its
page replacement strategy.

33

Summary

• We know how address translation works in the
“vanilla” case (single-level page table, no fault, no
TLB)
– hardware splits the virtual address into the virtual page

number and the offset; uses the VPN to index the page
table; concatenates the offset to the page frame number
(which is in the PTE) to obtain the physical address

• We know how the OS handles a page fault
– find or create (through eviction) a page frame into which to

load the needed page

– find the needed page on disk and bring it into the page frame

– fix up the page table entry

– put the process on the ready queue

34

• We’re aware of two “gotchas” that complicate
things in practice
– the memory reference overhead of address translation

• the need to reference the page table doubles the memory traffic

• solution: use a hardware cache (TLB = translation lookaside
buffer) to absorb page table lookups

– the memory required to hold page tables can be huge
• solution: use multi-level page tables; can page the lower levels,

or at least omit them if the address space is sparse
– this makes the TLB even more important, because without it, a

single user-level memory reference can cause two or three or four
page table memory references … and we can’t even afford one!

35

• TLB details
– Implemented in hardware

• fully associative cache (all entries searched in parallel)

• cache tags are virtual page numbers

• cache values are page table entries (page frame numbers)

• with PTE + offset, MMU can directly calculate the physical
address

– Can be small because of locality
• 16-48 entries can yield a 99% hit ratio

– Searched before the hw or OS walks the page table(s)
• hit: address translation does not require an extra memory

reference (or two or three or four) – “free”

• miss: walk the page table(s) to translate the address; this
translation is put into the TLB, evicting some other translation;
typically managed LRU

36

– On context switch
• TLB must be purged/flushed (using a special hardware

instruction) unless entries are tagged with a process ID
– otherwise, the new process will use the old process’s TLB entries

and reference its page frames!

• Cool tricks
– Read-only code
– Dereferencing a null pointer is an error
– Inter-process memory protection
– Shared libraries
– Inter-process communication
– Shared memory
– Copy-on-write
– Memory-mapped files
– Soft faults (e.g., debugger watchpoints)

